Analysis of traffic accidents on rural highways using Latent Class Clustering and Bayesian Networks.
نویسندگان
چکیده
One of the principal objectives of traffic accident analyses is to identify key factors that affect the severity of an accident. However, with the presence of heterogeneity in the raw data used, the analysis of traffic accidents becomes difficult. In this paper, Latent Class Cluster (LCC) is used as a preliminary tool for segmentation of 3229 accidents on rural highways in Granada (Spain) between 2005 and 2008. Next, Bayesian Networks (BNs) are used to identify the main factors involved in accident severity for both, the entire database (EDB) and the clusters previously obtained by LCC. The results of these cluster-based analyses are compared with the results of a full-data analysis. The results show that the combined use of both techniques is very interesting as it reveals further information that would not have been obtained without prior segmentation of the data. BN inference is used to obtain the variables that best identify accidents with killed or seriously injured. Accident type and sight distance have been identify in all the cases analysed; other variables such as time, occupant involved or age are identified in EDB and only in one cluster; whereas variables vehicles involved, number of injuries, atmospheric factors, pavement markings and pavement width are identified only in one cluster.
منابع مشابه
Analysis of traffic accident injury severity on Spanish rural highways using Bayesian networks.
Several different factors contribute to injury severity in traffic accidents, such as driver characteristics, highway characteristics, vehicle characteristics, accidents characteristics, and atmospheric factors. This paper shows the possibility of using Bayesian Networks (BNs) to classify traffic accidents according to their injury severity. BNs are capable of making predictions without the nee...
متن کاملGender-based Differences in Associations between Attitude and Self-esteem with Smoking Behavior among Adolescents: A Secondary Analysis Applying Bayesian Nonparametric Functional Latent Variable Model
Background: Different patterns of gender-based relationships between attitude toward smoking and self-esteem with smoking behavior have reported. However, such associations may be much more complex than a simply supposed linear relationship. We aimed to propose a method of providing hand details on the total and gender-based scenarios of the relationships between attitude toward smoking and sel...
متن کاملAnalyzing Motorcycle Crash Pattern and Riders’ Fault Status at a National Level: A Case Study from Iran
Motorcycle crashes constitute a significant proportion of traffic accidents all over the world. The aim of this paper was to examine the motorcycle crash patterns and rider fault status across the provinces of Iran. For this purpose, 6638 motorcycle crashes occurred in Iran through 2009-2012 were used as the analysis data and a two-step clustering approach was adopted as the analysis framework....
متن کاملApplying the latent class growth model into a longitudinal analysis of traffic crashes
One of the most important and meaningful tasks in traffic safety is to describe how traffic crash risk changes over time. Over the last 20 years, a lot of work has been done on this topic. However, with the recent introduction of latent class models for analyzing crash data, there is a need to examine how this new type of models could be used for longitudinal data analysis. Latent class models ...
متن کاملTraffic accident segmentation by means of latent class clustering.
Traffic accident data are often heterogeneous, which can cause certain relationships to remain hidden. Therefore, traffic accident analysis is often performed on a small subset of traffic accidents or several models are built for various traffic accident types. In this paper, we examine the effectiveness of a clustering technique, i.e. latent class clustering, for identifying homogenous traffic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Accident; analysis and prevention
دوره 51 شماره
صفحات -
تاریخ انتشار 2013